Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
PLoS One ; 18(6): e0286588, 2023.
Article in English | MEDLINE | ID: covidwho-20244773

ABSTRACT

OBJECTIVES: We sought to 1) identify long COVID phenotypes based on patient reported outcome measures (PROMs) and 2) determine whether the phenotypes were associated with quality of life (QoL) and/or lung function. METHODS: This was a longitudinal cohort study of hospitalized and non-hospitalized patients from March 2020 to January 2022 that was conducted across 4 Post-COVID Recovery Clinics in British Columbia, Canada. Latent class analysis was used to identify long COVID phenotypes using baseline PROMs (fatigue, dyspnea, cough, anxiety, depression, and post-traumatic stress disorder). We then explored the association between the phenotypes and QoL (using the EuroQoL 5 dimensions visual analogue scale [EQ5D VAS]) and lung function (using the diffusing capacity of the lung for carbon monoxide [DLCO]). RESULTS: There were 1,344 patients enrolled in the study (mean age 51 ±15 years; 780 [58%] were females; 769 (57%) were of a non-White race). Three distinct long COVID phenotypes were identified: Class 1) fatigue and dyspnea, Class 2) anxiety and depression, and Class 3) fatigue, dyspnea, anxiety, and depression. Class 3 had a significantly lower EQ5D VAS at 3 (50±19) and 6 months (54 ± 22) compared to Classes 1 and 2 (p<0.001). The EQ5D VAS significantly improved between 3 and 6 months for Class 1 (median difference of 6.0 [95% CI, 4.0 to 8.0]) and Class 3 (median difference of 5.0 [95% CI, 0 to 8.5]). There were no differences in DLCO between the classes. CONCLUSIONS: There were 3 distinct long COVID phenotypes with different outcomes in QoL between 3 and 6 months after symptom onset. These phenotypes suggest that long COVID is a heterogeneous condition with distinct subpopulations who may have different outcomes and warrant tailored therapeutic approaches.


Subject(s)
COVID-19 , Quality of Life , Female , Humans , Male , Longitudinal Studies , Post-Acute COVID-19 Syndrome , Latent Class Analysis , Dyspnea , Patient Reported Outcome Measures , Fatigue , British Columbia
2.
Int J Infect Dis ; 127: 116-123, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2240879

ABSTRACT

OBJECTIVES: With the uptake of COVID-19 vaccines, there is a need for population-based studies to assess risk factors for COVID-19-related hospitalization after vaccination and how they differ from unvaccinated individuals. METHODS: We used data from the British Columbia COVID-19 Cohort, a population-based cohort that includes all individuals (aged ≥18 years) who tested positive for SARS-CoV-2 by real-time reverse transcription-polymerase chain reaction from January 1, 2021 (after the start of vaccination program) to December 31, 2021. We used multivariable logistic regression models to assess COVID-19-related hospitalization risk by vaccination status and age group among confirmed COVID-19 cases. RESULTS: Of the 162,509 COVID-19 cases included in the analysis, 8,546 (5.3%) required hospitalization. Among vaccinated individuals, an increased odds of hospitalization with increasing age was observed for older age groups, namely those aged 50-59 years (odds ratio [OR] = 2.95, 95% confidence interval [CI]: 2.01-4.33), 60-69 years (OR = 4.82, 95% CI: 3.29, 7.07), 70-79 years (OR = 11.92, 95% CI: 8.02, 17.71), and ≥80 years (OR = 24.25, 95% CI: 16.02, 36.71). However, among unvaccinated individuals, there was a graded increase in odds of hospitalization with increasing age, starting at age group 30-39 years (OR = 2.14, 95% CI: 1.90, 2.41) to ≥80 years (OR = 41.95, 95% CI: 35.43, 49.67). Also, comparing all the age groups to the youngest, the observed magnitude of association was much higher among unvaccinated individuals than vaccinated ones. CONCLUSION: Alongside a number of comorbidities, our findings showed a strong association between age and COVID-19-related hospitalization, regardless of vaccination status. However, age-related hospitalization risk was reduced two-fold by vaccination, highlighting the need for vaccination in reducing the risk of severe disease and subsequent COVID-19-related hospitalization across all population groups.


Subject(s)
COVID-19 , Humans , Aged , Adolescent , Adult , Aged, 80 and over , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Cohort Studies , SARS-CoV-2 , Risk Factors , British Columbia/epidemiology , Vaccination , Hospitalization
3.
Clin Infect Dis ; 2022 Aug 30.
Article in English | MEDLINE | ID: covidwho-2230798

ABSTRACT

BACKGROUND: In late 2021, the Omicron SARS-CoV-2 variant emerged and rapidly replaced Delta as the dominant variant globally. The increased transmissibility of the variant led to surges in case rates as well as increases in hospitalizations, however, the true severity of the variant remained unclear. We aimed to provide robust estimates of Omicron severity relative to Delta. METHODS: This study was conducted using a retrospective cohort design with data from the British Columbia COVID-19 Cohort - a large provincial surveillance platform with linkage to administrative datasets. To capture the time of co-circulation with Omicron and Delta, December 2021 was chosen as the study period. We included individuals diagnosed with Omicron or Delta infection, as determined by whole genome sequencing (WGS). To assess the severity (hospitalization, ICU admission, length of stay), we conducted adjusted Cox proportional hazard models, weighted by inverse probability of treatment weights (IPTW), accounting for age, sex, underlying comorbidities, vaccination, sociodemographic status, and geographical variation. RESULTS: The cohort was composed of 13,128 individuals (7,729 Omicron and 5,399 Delta). There were 419 COVID-19 hospitalizations, with 118 (22%) among people diagnosed with Omicron (crude rate = 1.5% Omicron, 5.6% Delta). In multivariable IPTW analysis, Omicron was associated with a 50% lower risk of hospitalization compared to Delta (aHR = 0.50; 95%CI = 0·43-0.59), a 73% lower risk of ICU admission (aHR = 0.27; 95%CI = 0.19-0.38), and a 5 days shorter hospital stay on average (aß=-5.03; 95% CI=-8.01, -2.05). CONCLUSIONS: Our analysis supports findings from other studies demonstrating lower risk of severe outcomes in Omicron-infected individuals relative to Delta.

4.
BMJ Open Respir Res ; 10(1)2023 02.
Article in English | MEDLINE | ID: covidwho-2223677

ABSTRACT

INTRODUCTION: We compared the population rate of COVID-19 and influenza hospitalisations by age, COVID-19 vaccine status and pandemic phase, which was lacking in other studies. METHOD: We conducted a population-based study using hospital data from the province of British Columbia (population 5.3 million) in Canada with universal healthcare coverage. We created two cohorts of COVID-19 hospitalisations based on date of admission: annual cohort (March 2020 to February 2021) and peak cohort (Omicron era; first 10 weeks of 2022). For comparison, we created influenza annual and peak cohorts using three historical periods years to capture varying severity and circulating strains: 2009/2010, 2015/2016 and 2016/2017. We estimated hospitalisation rates per 100 000 population. RESULTS: COVID-19 and influenza hospitalisation rates by age group were 'J' shaped. The population rate of COVID-19 hospital admissions in the annual cohort (mostly unvaccinated; public health restrictions in place) was significantly higher than influenza among individuals aged 30-69 years, and comparable to the severe influenza year (2016/2017) among 70+. In the peak COVID-19 cohort (mostly vaccinated; few restrictions in place), the hospitalisation rate was comparable with influenza 2016/2017 in all age groups, although rates among the unvaccinated population were still higher than influenza among 18+. Among people aged 5-17 years, COVID-19 hospitalisation rates were lower than/comparable to influenza years in both cohorts. The COVID-19 hospitalisation rate among 0-4 years old, during Omicron, was higher than influenza 2015/2016 and 2016/2017 and lower than 2009/2010 pandemic. CONCLUSIONS: During first Omicron wave, COVID-19 hospitalisation rates were significantly higher than historical influenza hospitalisation rates for unvaccinated adults but were comparable to influenza for vaccinated adults. For children, in the context of high infection levels, hospitalisation rates for COVID-19 were lower than 2009/2010 H1N1 influenza and comparable (higher for 0-4) to non-pandemic years, regardless of the vaccine status.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Adult , Child , Humans , Infant, Newborn , Infant , Child, Preschool , Influenza, Human/epidemiology , Influenza, Human/prevention & control , British Columbia/epidemiology , COVID-19 Vaccines , COVID-19/epidemiology , Hospitalization
5.
Open Forum Infect Dis ; 9(12): ofac640, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2190081

ABSTRACT

Background: Long coronavirus disease (COVID) patients experience persistent symptoms after acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Healthcare utilization data could provide critical information on the disease burden of long COVID for service planning; however, not all patients are diagnosed or assigned long COVID diagnostic codes. We developed an algorithm to identify individuals with long COVID using population-level health administrative data from British Columbia (BC), Canada. Methods: An elastic net penalized logistic regression model was developed to identify long COVID patients based on demographic characteristics, pre-existing conditions, COVID-19-related data, and all symptoms/conditions recorded >28-183 days after the COVID-19 symptom onset/reported (index) date of known long COVID patients (n = 2430) and a control group (n = 24 300), selected from all adult COVID-19 cases in BC with an index date on/before October 31, 2021 (n = 168 111). Known long COVID cases were diagnosed in a clinic and/or had the International Classification of Diseases, Tenth Revision, Canada (ICD-10-CA) code for "post COVID-19 condition" in their records. Results: The algorithm retained known symptoms/conditions associated with long COVID, demonstrating high sensitivity (86%), specificity (86%), and area under the receiver operator curve (93%). It identified 25 220 (18%) long COVID patients among the remaining 141 381 adult COVID-19 cases, >10 times the number of known cases. Known and predicted long COVID patients had comparable demographic and health-related characteristics. Conclusions: Our algorithm identified long COVID patients with a high level of accuracy. This large cohort of long COVID patients will serve as a platform for robust assessments on the clinical course of long COVID, and provide much needed concrete information for decision-making.

6.
J Med Virol ; 95(1): e28423, 2023 01.
Article in English | MEDLINE | ID: covidwho-2173203

ABSTRACT

The SARS-CoV-2 variant Omicron emerged in late 2021. In British Columbia (BC), Canada, and globally, three genetically distinct subvariants of Omicron, BA.1, BA.2, and BA.5, emerged and became dominant successively within an 8-month period. SARS-CoV-2 subvariants continue to circulate in the population, acquiring new mutations that have the potential to alter infectivity, immunity, and disease severity. Here, we report a propensity-matched severity analysis from residents of BC over the course of the Omicron wave, including 39,237 individuals infected with BA.1, BA.2, or BA.5 based on paired high-quality sequence data and linked to comprehensive clinical outcomes data between December 23, 2021 and August 31, 2022. Relative to BA.1, BA.2 cases were associated with a 15% and 28% lower risk of hospitalization and intensive care unit (ICU) admission (aHRhospital = 1.17; 95% confidence interval [CI] = 1.096-1.252; aHRICU = 1.368; 95% CI = 1.152-1.624), whereas BA.5 infections were associated with an 18% higher risk of hospitalization (aHRhospital = 1.18; 95% CI = 1.133-1.224) after accounting for age, sex, comorbidities, vaccination status, geography, and social determinants of health. Phylogenetic analysis revealed no specific subclades associated with more severe clinical outcomes for any Omicron subvariant. In summary, BA.1, BA.2, and BA.5 subvariants were associated with differences in clinical severity, emphasizing how variant-specific monitoring programs remain critical components of patient and population-level public health responses as the pandemic continues.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , British Columbia/epidemiology , SARS-CoV-2/genetics , Cohort Studies , Phylogeny , COVID-19/epidemiology
9.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-1939982

ABSTRACT

Background COVID-19 vaccination is a key public health measure in the pandemic response. The rapid evolution of SARS-CoV-2 variants introduce new groups of spike protein mutations. These new mutations are thought to aid in the evasion of vaccine-induced immunity and render vaccines less effective. However, not all spike mutations contribute equally to vaccine escape. Previous studies associate mutations with vaccine breakthrough infections (BTI), but information at the population level remains scarce. We aimed to identify spike mutations associated with SARS-CoV-2 vaccine BTI in a community setting during the emergence and predominance of the Delta-variant. Methods This case-control study used both genomic, and epidemiological data from a provincial COVID-19 surveillance program. Analyses were stratified into two periods approximating the emergence and predominance of the Delta-variant, and restricted to primary SARS-CoV-2 infections from either unvaccinated individuals, or those infected ≥14 days after their second vaccination dose in a community setting. Each sample's spike mutations were concatenated into a unique spike mutation profile (SMP). Penalized logistic regression was used to identify spike mutations and SMPs associated with SARS-CoV-2 vaccine BTI in both time periods. Results and Discussion This study reports population level relative risk estimates, between 2 and 4-folds, of spike mutation profiles associated with BTI during the emergence and predominance of the Delta-variant, which comprised 19,624 and 17,331 observations, respectively. The identified mutations cover multiple spike domains including the N-terminal domain (NTD), receptor binding domain (RBD), S1/S2 cleavage region, fusion peptide and heptad regions. Mutations in these different regions imply various mechanisms contribute to vaccine escape. Our profiling method identifies naturally occurring spike mutations associated with BTI, and can be applied to emerging SARS-CoV-2 variants with novel groups of spike mutations.

10.
Clin Infect Dis ; 75(11): 1980-1992, 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-1927303

ABSTRACT

BACKGROUND: The Canadian coronavirus disease 2019 (COVID-19) immunization strategy deferred second doses and allowed mixed schedules. We compared 2-dose vaccine effectiveness (VE) by vaccine type (mRNA and/or ChAdOx1), interval between doses, and time since second dose in 2 of Canada's larger provinces. METHODS: Two-dose VE against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or hospitalization among adults ≥18 years, including due to Alpha, Gamma, and Delta variants of concern (VOCs), was assessed ≥14 days postvaccination by test-negative design studies separately conducted in British Columbia and Quebec, Canada, between 30 May and 27 November (epi-weeks 22-47) 2021. RESULTS: In both provinces, all homologous or heterologous mRNA and/or ChAdOx1 2-dose schedules were associated with ≥90% reduction in SARS-CoV-2 hospitalization risk for ≥7 months. With slight decline from a peak of >90%, VE against infection was ≥80% for ≥6 months following homologous mRNA vaccination, lower by ∼10% when both doses were ChAdOx1 but comparably high following heterologous ChAdOx1 + mRNA receipt. Findings were similar by age group, sex, and VOC. VE was significantly higher with longer 7-8-week versus manufacturer-specified 3-4-week intervals between mRNA doses. CONCLUSIONS: Two doses of any mRNA and/or ChAdOx1 combination gave substantial and sustained protection against SARS-CoV-2 hospitalization, spanning Delta-dominant circulation. ChAdOx1 VE against infection was improved by heterologous mRNA series completion. A 7-8-week interval between first and second doses improved mRNA VE and may be the optimal schedule outside periods of intense epidemic surge. Findings support interchangeability and extended intervals between SARS-CoV-2 vaccine doses, with potential global implications for low-coverage areas and, going forward, for children.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Humans , British Columbia/epidemiology , Quebec/epidemiology , COVID-19 Vaccines , Vaccine Efficacy , COVID-19/epidemiology , COVID-19/prevention & control , RNA, Messenger
11.
J Infect Dis ; 226(1): 485-496, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1746883

ABSTRACT

BACKGROUND: In British Columbia, Canada, most adults 50-69 years old became eligible for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in April 2021, with chimpanzee adenoviral vectored vaccine (ChAdOx1) restricted to ≥55-year-olds and second doses deferred ≥6 weeks to optimize single-dose coverage. METHODS: Among adults 50-69 years old, single-dose messenger RNA (mRNA) and ChAdOx1 vaccine effectiveness (VE) against SARS-CoV-2 infection and hospitalization, including variant-specific, was assessed by test-negative design between 4 April and 2 October 2021. RESULTS: Single-dose VE included 11 861 cases and 99 544 controls. Median of postvaccination follow-up was 32 days (interquartile range, 15-52 days). Alpha, Gamma, and Delta variants comprised 23%, 18%, and 56%, respectively, of genetically characterized viruses. At 21-55 days postvaccination, single-dose mRNA and ChAdOx1 VE (95% confidence interval [CI]) was 74% (71%-76%) and 59% (53%-65%) against any infection and 86% (80%-90%) and 94% (85%-97%) against hospitalization, respectively. VE (95% CI) was similar against Alpha and Gamma infections for mRNA (80% [76%-84%] and 80% [75%-84%], respectively) and ChAdOx1 (69% [60%-76%] and 66% [56%-73%], respectively). mRNA VE was lower at 63% (95% CI, 56%-69%) against Delta but 85% (95% CI, 71%-92%) against Delta-associated hospitalization (nonestimable for ChAdOx1). CONCLUSIONS: A single mRNA or ChAdOx1 vaccine dose gave important protection against SARS-CoV-2, including early variants of concern. ChAdOx1 VE was lower against infection, but 1 dose of either vaccine reduced the hospitalization risk by >85% to at least 8 weeks postvaccination. Findings inform program options, including longer dosing intervals.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Aged , British Columbia/epidemiology , COVID-19/prevention & control , Humans , Middle Aged , RNA, Messenger , SARS-CoV-2/genetics , Vaccine Efficacy
12.
Can Commun Dis Rep ; 48(1): 22-26, 2022 Jan 26.
Article in English | MEDLINE | ID: covidwho-1726968

ABSTRACT

Background: The Kappa variant is designated as a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of interest (VOI). We identified 195 Kappa variant cases in a region of British Columbia, Canada-the largest published cluster in North America. Objectives: To describe the epidemiology of the Kappa variant in relation to other circulating SARS-CoV-2 variants of concern (VOC) in the region to determine if the epidemiology of the Kappa variant supports a VOI or VOC status. Methods: Clinical specimens testing positive for SARS-CoV-2 collected between March 10 and May 2, 2021, were screened for the detection of known circulating VOCs; approximately 50% of specimens were subsequently selected for whole genome sequencing (WGS). Epidemiological analysis was performed comparing the characteristics of Kappa cases to the main circulating variants in the region (Alpha and Gamma) and to non-VOC/VOI cases. Results: A total of 2,079 coronavirus disease 2019 (COVID-19) cases were reported in the region during the study period, of which 54% were selected for WGS. The 1,131 sequenced cases were categorized into Kappa, Alpha, Gamma and non-VOC/VOI. While Alpha and Gamma cases were found to have a significantly higher attack rate among household contacts compared to non-VOI/VOC cases, Kappa was not. Conclusion: Epidemiological analysis supports the designation of Kappa as a VOI and not a VOC. The Alpha and Gamma variants were found to be more transmissible, explaining their subsequent dominance in the region and the rapid disappearance of the Kappa variant. Variant surveillance strategies should focus on both detection of established VOCs and detection of potential new VOCs.

13.
Clin Infect Dis ; 74(7): 1158-1165, 2022 04 09.
Article in English | MEDLINE | ID: covidwho-1700948

ABSTRACT

BACKGROUND: Randomized-controlled trials of messenger RNA (mRNA) vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) included relatively few elderly participants. We assess single-dose mRNA vaccine effectiveness (VE) in adults ≥ 70 years old in British Columbia, Canada, where second doses were deferred by up to 16 weeks and where a spring 2021 wave uniquely included codominant circulation of Alpha (B.1.1.7) and Gamma (P.1) variants of concern (VOC). METHODS: Analyses included community-dwelling adults ≥ 70 years old with specimen collection between 4 April (epidemiological week 14) and 1 May (week 17) 2021. Adjusted VE was estimated by test-negative design. Cases were reverse-transcription polymerase chain reaction (RT-PCR) test-positive for SARS-CoV-2, and controls were test-negative. Vaccine status was defined by receipt of a single-dose ≥ 21 days before specimen collection, but a range of intervals was assessed. Variant-specific VE was estimated against viruses genetically characterized as Alpha, Gamma or non-VOC lineages. RESULTS: VE analyses included 16 993 specimens: 1226 (7%) test-positive cases and 15 767 test-negative controls. Of 1131 (92%) genetically characterized viruses, 509 (45%), 314 (28%), and 276 (24%) were Alpha, Gamma, and non-VOC lineages, respectively. At 0-13 days postvaccination, VE was negligible at 14% (95% confidence interval [CI], 0-26) but increased from 43% (95% CI, 30-53) at 14-20 days to 75% (95% CI, 63-83) at 35-41 days postvaccination. VE at ≥ 21 days postvaccination was 65% (95% CI, 58-71) overall: 72% (95% CI, 58-81), 67% (95% CI, 57-75), and 61% (95% CI, 45-72) for non-VOC, Alpha, and Gamma variants, respectively. CONCLUSIONS: A single dose of mRNA vaccine reduced the risk of SARS-CoV-2 by about two-thirds in adults ≥ 70 years old, with protection only minimally reduced against Alpha and Gamma variants.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Aged , British Columbia/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Humans , RNA, Messenger , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
15.
Emerg Infect Dis ; 27(11): 2802-2809, 2021 11.
Article in English | MEDLINE | ID: covidwho-1357504

ABSTRACT

Several severe acute respiratory syndrome coronavirus 2 variants of concern (VOCs) emerged in late 2020; lineage B.1.1.7 initially dominated globally. However, lineages B.1.351 and P.1 represent potentially greater risk for transmission and immune escape. In British Columbia, Canada, B.1.1.7 and B.1.351 were first identified in December 2020 and P.1 in February 2021. We combined quantitative PCR and whole-genome sequencing to assess relative contribution of VOCs in nearly 67,000 infections during the first 16 weeks of 2021 in British Columbia. B.1.1.7 accounted for <10% of screened or sequenced specimens early on, increasing to >50% by week 8. P.1 accounted for <10% until week 10, increased rapidly to peak at week 12, and by week 13 codominated within 10% of rates of B.1.1.7. B.1.351 was a minority throughout. This rapid expansion of P.1 but suppression of B.1.351 expands our understanding of population-level VOC patterns and might provide clues to fitness determinants for emerging VOCs.


Subject(s)
COVID-19 , SARS-CoV-2 , British Columbia/epidemiology , COVID-19/epidemiology , COVID-19/virology , Humans , Real-Time Polymerase Chain Reaction
16.
EBioMedicine ; 66: 103316, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1163668

ABSTRACT

BACKGROUND: Angiotensin converting enzyme 2 (ACE2) protein serves as the host receptor for SARS-CoV-2, with a critical role in viral infection. We aim to understand population level variation of nasopharyngeal ACE2 transcription in people tested for COVID-19 and the relationship between ACE2 transcription and SARS-CoV-2 viral load, while adjusting for expression of: (i) the complementary protease, Transmembrane serine protease 2 (TMPRSS2), (ii) soluble ACE2, (iii) age, and (iv) biological sex. The ACE2 gene was targeted to measure expression of transmembrane and soluble transcripts. METHODS: A cross-sectional study of n = 424 "participants" aged 1-104 years referred for COVID-19 testing was performed in British Columbia, Canada. Patients who tested positive for COVID-19 were matched by age and biological sex to patients who tested negative. Viral load and host gene expression were assessed by quantitative reverse-transcriptase polymerase chain reaction. Bivariate analysis and multiple linear regression were performed to understand the role of nasopharyngeal ACE2 expression in SARS-CoV-2 infection. FINDINGS: Analysis showed no association between age and nasopharyngeal ACE2 transcription in those who tested negative for COVID-19 (P = 0•092). Mean relative transcription of transmembrane (P = 0•00012) and soluble (P<0•0001) ACE2 isoforms, as well as TMPRSS2 (P<0•0001) was higher in COVID-19-negative participants than COVID--19 positive ones, yielding a negative correlation between targeted host gene expression and positive COVID-19 diagnosis. In bivariate analysis of COVID-19-positive participants, transcription of transmembrane ACE2 positively correlated with SARS-CoV-2 viral RNA load (B = 0•49, R2=0•14, P<0•0001), transcription of soluble ACE2 negatively correlated (B= -0•85, R2= 0•26, P<0•0001), and no correlation was found with TMPRSS2 transcription (B= -0•042, R2=<0•10, P = 0•69). Multivariable analysis showed that the greatest viral RNA loads were observed in participants with high transmembrane ACE2 transcription (Β= 0•89, 95%CI: [0•59 to 1•18]), while transcription of the soluble isoform appears to protect against high viral RNA load in the upper respiratory tract (Β= -0•099, 95%CI: [-0•18 to -0•022]). INTERPRETATION: Nasopharyngeal ACE2 transcription plays a dual, contrasting role in SARS-CoV-2 infection of the upper respiratory tract. Transcription of the transmembrane ACE2 isoform positively correlates, while transcription of the soluble isoform negatively correlates with viral RNA load after adjusting for age, biological sex, and transcription of TMPRSS2. FUNDING: This project (COV-55) was funded by Genome British Columbia as part of their COVID-19 rapid response initiative.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19 Testing , COVID-19/genetics , Nasopharynx/virology , Adult , Age Factors , Aged , Aged, 80 and over , British Columbia , COVID-19/virology , Cross-Sectional Studies , Female , Host-Pathogen Interactions/genetics , Humans , Male , Middle Aged , Nasopharynx/physiology , RNA, Viral/analysis , Serine Endopeptidases/genetics , Transcription, Genetic , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL